Tensor Product Calculator

Tensor Product Calculator - Multi-Tools

Tensor Product Calculator

Calculate the tensor product (Kronecker product) of two matrices.

Select Matrix Sizes
Matrix A
Matrix B
Matrix A
Matrix B
Tensor Product (Kronecker Product)

The tensor product of two matrices A and B is defined as:

\[ A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots \\ a_{21}B & a_{22}B & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \]

Properties:

  • \((A \otimes B)(C \otimes D) = (AC) \otimes (BD)\)
  • \((A \otimes B)^T = A^T \otimes B^T\)
  • \((A \otimes B)^{-1} = A^{-1} \otimes B^{-1}\)
  • \(\text{det}(A \otimes B) = \text{det}(A)^n \text{det}(B)^m\)
  • \(\text{tr}(A \otimes B) = \text{tr}(A)\text{tr}(B)\)

Applications:

  • Quantum mechanics
  • Signal processing
  • Image processing
  • Neural networks
  • Multilinear algebra

Geometric Interpretation:

  • Represents the outer product of vector spaces
  • Combines two linear transformations
  • Preserves tensor structure
  • Maintains multilinearity
Scroll to Top