Matrix Trace Calculator

Matrix Trace Calculator - Multi-Tools

Matrix Trace Calculator

Calculate the trace of a square matrix (sum of diagonal elements).

Select Matrix Size
Enter Matrix
Matrix Trace

The trace of a square matrix A is the sum of its diagonal elements:

\[ \text{tr}(A) = \sum_{i=1}^{n} a_{ii} \]

Properties:

  • \(\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B)\)
  • \(\text{tr}(cA) = c \cdot \text{tr}(A)\) for scalar c
  • \(\text{tr}(AB) = \text{tr}(BA)\)
  • \(\text{tr}(A^T) = \text{tr}(A)\)
  • \(\text{tr}(A^{-1}) = \frac{1}{\det(A)} \text{tr}(\text{adj}(A))\)

Applications:

  • Characteristic polynomial coefficients
  • Eigenvalue sum
  • Quantum mechanics (density matrices)
  • Statistics (covariance matrices)
  • Machine learning (feature selection)

Special Cases:

  • Identity matrix: tr(I) = n
  • Zero matrix: tr(0) = 0
  • Diagonal matrix: tr(D) = sum of diagonal elements
  • Projection matrix: tr(P) = rank(P)

Geometric Interpretation:

  • Sum of eigenvalues
  • Invariant under similarity transformations
  • Related to matrix determinant
  • Used in matrix decomposition
Scroll to Top