Cofunction Calculator
Calculate cofunction relationships between trigonometric functions.
Results
Step-by-Step Solution
Cofunction Relationships
The cofunction relationships are:
- \(\sin(\theta) = \cos(90° - \theta)\)
- \(\cos(\theta) = \sin(90° - \theta)\)
- \(\tan(\theta) = \cot(90° - \theta)\)
- \(\cot(\theta) = \tan(90° - \theta)\)
- \(\sec(\theta) = \csc(90° - \theta)\)
- \(\csc(\theta) = \sec(90° - \theta)\)
In radians:
- \(\sin(\theta) = \cos(\frac{\pi}{2} - \theta)\)
- \(\cos(\theta) = \sin(\frac{\pi}{2} - \theta)\)
- \(\tan(\theta) = \cot(\frac{\pi}{2} - \theta)\)
- \(\cot(\theta) = \tan(\frac{\pi}{2} - \theta)\)
- \(\sec(\theta) = \csc(\frac{\pi}{2} - \theta)\)
- \(\csc(\theta) = \sec(\frac{\pi}{2} - \theta)\)
Properties:
- Cofunctions are complementary angles
- Sum of complementary angles is 90° or π/2 radians
- Useful for simplifying trigonometric expressions
- Helpful in solving trigonometric equations
- Important in calculus and physics
Applications:
- Trigonometry
- Calculus
- Physics
- Engineering
- Navigation