Orthocenter Calculator

Orthocenter Calculator - Multi-Tools

Orthocenter Calculator

Results

Orthocenter Coordinates

-

Triangle Area

-

Perimeter

-

Semi-perimeter

-

About Orthocenter

The orthocenter of a triangle is the point where the three altitudes of the triangle intersect. An altitude is a perpendicular line from a vertex to the opposite side.

Properties
  • The orthocenter lies inside the triangle for acute triangles
  • The orthocenter coincides with the vertex of the right angle for right triangles
  • The orthocenter lies outside the triangle for obtuse triangles
  • The orthocenter is the center of the triangle's orthic triangle
Formulas

For coordinates (x₁,y₁), (x₂,y₂), (x₃,y₃):

Orthocenter x = (x₁tan(A) + x₂tan(B) + x₃tan(C))/(tan(A) + tan(B) + tan(C))

Orthocenter y = (y₁tan(A) + y₂tan(B) + y₃tan(C))/(tan(A) + tan(B) + tan(C))

Scroll to Top