Matrix Norm Calculator

Matrix Norm Calculator - Multi-Tools

Matrix Norm Calculator

Calculate various matrix norms including Frobenius, 1-norm, 2-norm, and infinity norm.

Select Norm Type
Select Matrix Size
Enter Matrix
Matrix Norms

\[ \|A\|_F = \sqrt{\sum_{i=1}^{m}\sum_{j=1}^{n} |a_{ij}|^2} \]

Square root of the sum of squared elements.

\[ \|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^{m} |a_{ij}| \]

Maximum absolute column sum.

\[ \|A\|_2 = \sigma_{\max}(A) \]

Largest singular value of A.

\[ \|A\|_\infty = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}| \]

Maximum absolute row sum.

Properties:

  • Non-negativity: ‖A‖ ≥ 0
  • Definiteness: ‖A‖ = 0 if and only if A = 0
  • Triangle inequality: ‖A + B‖ ≤ ‖A‖ + ‖B‖
  • Homogeneity: ‖cA‖ = |c|‖A‖
  • Submultiplicativity: ‖AB‖ ≤ ‖A‖‖B‖

Applications:

  • Error analysis in numerical methods
  • Convergence analysis
  • Condition number calculation
  • Matrix approximation
  • Machine learning optimization
Scroll to Top