Phase Shift Calculator

Phase Shift Calculator - Multi-Tools

Phase Shift Calculator

Calculate and visualize phase shifts in trigonometric functions.

Function Parameters
Function Type
Display Options
Function Plot
Phase Shift Formulas

The general form of a trigonometric function with phase shift is:

\[ f(x) = A\sin(\omega x + \phi) \]

\[ f(x) = A\cos(\omega x + \phi) \]

\[ f(x) = A\tan(\omega x + \phi) \]

Where:

  • A is the amplitude
  • ω (omega) is the angular frequency
  • φ (phi) is the phase shift
  • x is the independent variable

Properties:

  • Amplitude (A): Maximum displacement from the mean position
  • Frequency (ω): Number of cycles per unit time
  • Phase Shift (φ): Horizontal displacement of the function
  • Period: \[ T = \frac{2\pi}{\omega} \]

Applications:

  • Signal processing
  • Wave analysis
  • Electrical engineering
  • Physics (wave motion)
  • Music and sound analysis

Common Phase Shifts:

  • \[ \sin(x + \frac{\pi}{2}) = \cos(x) \]
  • \[ \sin(x + \pi) = -\sin(x) \]
  • \[ \sin(x + \frac{3\pi}{2}) = -\cos(x) \]
  • \[ \sin(x + 2\pi) = \sin(x) \]
Scroll to Top