Quaternion Calculator

Quaternion Calculator - Multi-Tools

Quaternion Calculator

+ i + j + k
+ i + j + k

Result

Quaternion Operations

Basic Operations
  • Addition: (w₁ + x₁i + y₁j + z₁k) + (w₂ + x₂i + y₂j + z₂k) = (w₁ + w₂) + (x₁ + x₂)i + (y₁ + y₂)j + (z₁ + z₂)k
  • Multiplication: (w₁ + x₁i + y₁j + z₁k) × (w₂ + x₂i + y₂j + z₂k) = (w₁w₂ - x₁x₂ - y₁y₂ - z₁z₂) + (w₁x₂ + x₁w₂ + y₁z₂ - z₁y₂)i + (w₁y₂ - x₁z₂ + y₁w₂ + z₁x₂)j + (w₁z₂ + x₁y₂ - y₁x₂ + z₁w₂)k
  • Conjugate: (w + xi + yj + zk)* = w - xi - yj - zk
  • Norm: |q| = √(w² + x² + y² + z²)
  • Inverse: q⁻¹ = q*/|q|²

3D Rotation

A quaternion q = w + xi + yj + zk can represent a rotation around a unit vector (x, y, z) by an angle θ, where:

  • w = cos(θ/2)
  • x = sin(θ/2) * axis_x
  • y = sin(θ/2) * axis_y
  • z = sin(θ/2) * axis_z

To rotate a point p = (px, py, pz) using quaternion q:

p' = qpq⁻¹

Example Problems

Example 1: Quaternion Addition

q₁ = 1 + 2i + 3j + 4k

q₂ = 2 + 3i + 4j + 5k

q₁ + q₂ = 3 + 5i + 7j + 9k

Example 2: 90° Rotation around Z-axis

θ = 90°

axis = (0, 0, 1)

q = cos(45°) + sin(45°)k

q ≈ 0.7071 + 0.7071k

Advertisement Space
Scroll to Top