Tangent Calculator - Multi-Tools

Tangent Calculator

Calculate the tangent of an angle and visualize the function.

Input Value
Function Plot
Tangent Function

The tangent function is defined as:

\[ \tan(x) = \frac{\sin(x)}{\cos(x)} = \frac{\text{opposite}}{\text{adjacent}} \]

Properties:

  • Domain: All real numbers except \(x = \frac{\pi}{2} + n\pi\) (where n is an integer)
  • Range: All real numbers
  • Period: π (180°)
  • Odd function: tan(-x) = -tan(x)
  • Vertical asymptotes at \(x = \frac{\pi}{2} + n\pi\)

Common Values:

  • \[ \tan(0°) = 0 \]
  • \[ \tan(30°) = \frac{1}{\sqrt{3}} \approx 0.5774 \]
  • \[ \tan(45°) = 1 \]
  • \[ \tan(60°) = \sqrt{3} \approx 1.7321 \]
  • \[ \tan(90°) = \text{undefined} \]

Applications:

  • Trigonometry
  • Calculus
  • Physics (wave motion)
  • Engineering (signal processing)
  • Navigation and surveying

Related Functions:

  • \[ \tan(x) = \frac{\sin(x)}{\cos(x)} \]
  • \[ \tan(x) = \frac{1}{\cot(x)} \]
  • \[ \tan(x) = \frac{\sec(x)}{\csc(x)} \]

Special Angles:

  • \[ \tan(0°) = 0 \]
  • \[ \tan(45°) = 1 \]
  • \[ \tan(90°) = \text{undefined} \]
  • \[ \tan(180°) = 0 \]
  • \[ \tan(270°) = \text{undefined} \]
Scroll to Top