Trigonometric Functions Calculator
Calculate all six trigonometric functions for a given angle.
Results
Step-by-Step Solution
Function Plots
Trigonometric Functions
The six basic trigonometric functions are:
Primary Functions
- \[ \sin(x) = \frac{\text{opposite}}{\text{hypotenuse}} \]
- \[ \cos(x) = \frac{\text{adjacent}}{\text{hypotenuse}} \]
- \[ \tan(x) = \frac{\text{opposite}}{\text{adjacent}} = \frac{\sin(x)}{\cos(x)} \]
Reciprocal Functions
- \[ \csc(x) = \frac{1}{\sin(x)} = \frac{\text{hypotenuse}}{\text{opposite}} \]
- \[ \sec(x) = \frac{1}{\cos(x)} = \frac{\text{hypotenuse}}{\text{adjacent}} \]
- \[ \cot(x) = \frac{1}{\tan(x)} = \frac{\text{adjacent}}{\text{opposite}} = \frac{\cos(x)}{\sin(x)} \]
Properties
- Domain and Range:
- sin(x), cos(x): Domain = All real numbers, Range = [-1, 1]
- tan(x), cot(x): Domain = All real numbers except undefined points, Range = All real numbers
- sec(x), csc(x): Domain = All real numbers except undefined points, Range = (-∞, -1] ∪ [1, ∞)
- Periodicity:
- sin(x), cos(x), sec(x), csc(x): Period = 2π (360°)
- tan(x), cot(x): Period = π (180°)
- Symmetry:
- Odd functions: sin(x), tan(x), cot(x), csc(x)
- Even functions: cos(x), sec(x)
Common Values
- \[ \sin(0°) = 0, \cos(0°) = 1, \tan(0°) = 0 \]
- \[ \sin(30°) = \frac{1}{2}, \cos(30°) = \frac{\sqrt{3}}{2}, \tan(30°) = \frac{1}{\sqrt{3}} \]
- \[ \sin(45°) = \frac{1}{\sqrt{2}}, \cos(45°) = \frac{1}{\sqrt{2}}, \tan(45°) = 1 \]
- \[ \sin(60°) = \frac{\sqrt{3}}{2}, \cos(60°) = \frac{1}{2}, \tan(60°) = \sqrt{3} \]
- \[ \sin(90°) = 1, \cos(90°) = 0, \tan(90°) = \text{undefined} \]
Applications
- Trigonometry
- Calculus
- Physics (wave motion)
- Engineering (signal processing)
- Navigation and surveying
- Music and sound analysis