Trigonometry Calculator

Trigonometry Calculator - Multi-Tools

Trigonometry Calculator

Comprehensive trigonometry calculations and visualizations.

Select Calculation Type
Triangle Dimensions
Visualization
Trigonometry Formulas
Right Triangle
  • Pythagorean Theorem: \[ a^2 + b^2 = c^2 \]
  • \[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \]
  • \[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \]
  • \[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \]
Oblique Triangle
  • Law of Sines: \[ \frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} \]
  • Law of Cosines: \[ c^2 = a^2 + b^2 - 2ab\cos(C) \]
  • Area: \[ \text{Area} = \frac{1}{2}ab\sin(C) \]
Unit Circle
  • \[ \sin(\theta) = y \]
  • \[ \cos(\theta) = x \]
  • \[ \tan(\theta) = \frac{y}{x} \]
  • \[ x^2 + y^2 = 1 \]
Common Values
  • \[ \sin(30°) = \frac{1}{2}, \cos(30°) = \frac{\sqrt{3}}{2} \]
  • \[ \sin(45°) = \frac{1}{\sqrt{2}}, \cos(45°) = \frac{1}{\sqrt{2}} \]
  • \[ \sin(60°) = \frac{\sqrt{3}}{2}, \cos(60°) = \frac{1}{2} \]
Applications
  • Navigation and surveying
  • Architecture and construction
  • Physics and engineering
  • Computer graphics
  • Music and sound analysis
Scroll to Top