Unit Circle Calculator

Unit Circle Calculator - Multi-Tools

Unit Circle Calculator

Visualize and calculate coordinates and trigonometric values on the unit circle.

Input Value
Unit Circle
Unit Circle

The unit circle is a circle with radius 1 centered at the origin (0,0).

Key Points
  • \[ (1,0) \] - 0° or 0 radians
  • \[ (0,1) \] - 90° or π/2 radians
  • \[ (-1,0) \] - 180° or π radians
  • \[ (0,-1) \] - 270° or 3π/2 radians
Trigonometric Functions
  • \[ \sin(\theta) = y \]
  • \[ \cos(\theta) = x \]
  • \[ \tan(\theta) = \frac{y}{x} \]
  • \[ \csc(\theta) = \frac{1}{y} \]
  • \[ \sec(\theta) = \frac{1}{x} \]
  • \[ \cot(\theta) = \frac{x}{y} \]
Common Values
  • 30° (π/6):
    • \[ \sin(30°) = \frac{1}{2} \]
    • \[ \cos(30°) = \frac{\sqrt{3}}{2} \]
    • \[ \tan(30°) = \frac{1}{\sqrt{3}} \]
  • 45° (π/4):
    • \[ \sin(45°) = \frac{1}{\sqrt{2}} \]
    • \[ \cos(45°) = \frac{1}{\sqrt{2}} \]
    • \[ \tan(45°) = 1 \]
  • 60° (π/3):
    • \[ \sin(60°) = \frac{\sqrt{3}}{2} \]
    • \[ \cos(60°) = \frac{1}{2} \]
    • \[ \tan(60°) = \sqrt{3} \]
Properties
  • Radius = 1
  • Circumference = 2π
  • Area = π
  • All points satisfy x² + y² = 1
Applications
  • Trigonometry
  • Calculus
  • Physics (wave motion)
  • Engineering (signal processing)
  • Music and sound analysis
Quadrant Signs
  • Quadrant I (0° to 90°): All positive
  • Quadrant II (90° to 180°): sin positive, others negative
  • Quadrant III (180° to 270°): tan positive, others negative
  • Quadrant IV (270° to 360°): cos positive, others negative
Scroll to Top