Half Angle Calculator

Half Angle Calculator - Multi-Tools

Half Angle Calculator

Calculate trigonometric functions of half angles using various formulas.

Input Angle
Angle Unit
Select Function
Half Angle Formulas

The half angle formulas are:

  • \[ \sin(\frac{\theta}{2}) = \pm\sqrt{\frac{1 - \cos(\theta)}{2}} \]
  • \[ \cos(\frac{\theta}{2}) = \pm\sqrt{\frac{1 + \cos(\theta)}{2}} \]
  • \[ \tan(\frac{\theta}{2}) = \pm\sqrt{\frac{1 - \cos(\theta)}{1 + \cos(\theta)}} = \frac{\sin(\theta)}{1 + \cos(\theta)} = \frac{1 - \cos(\theta)}{\sin(\theta)} \]

Properties:

  • These formulas express trigonometric functions of half angles in terms of single angles
  • The ± sign depends on the quadrant of θ/2
  • Useful for simplifying expressions and solving equations
  • Important in calculus and physics
  • Can be derived from double angle formulas

Applications:

  • Trigonometry
  • Calculus (integration)
  • Physics (wave motion)
  • Engineering (signal processing)
  • Computer graphics

Common Values:

  • \(\sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}\)
  • \(\cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}\)
  • \(\tan(\frac{\pi}{4}) = 1\)
  • \(\sin(\frac{\pi}{6}) = \frac{1}{2}\)
  • \(\cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}\)
  • \(\tan(\frac{\pi}{6}) = \frac{1}{\sqrt{3}}\)
Scroll to Top