Power Reducing Calculator
Reduce powers of trigonometric functions using power-reducing formulas.
Results
Step-by-Step Solution
Power Reducing Formulas
The power reducing formulas are:
- \[ \sin^2(x) = \frac{1 - \cos(2x)}{2} \]
- \[ \cos^2(x) = \frac{1 + \cos(2x)}{2} \]
- \[ \tan^2(x) = \frac{1 - \cos(2x)}{1 + \cos(2x)} \]
Properties:
- Reduces even powers of trigonometric functions
- Converts to first power of cosine
- Useful for integration
- Helps simplify complex expressions
Applications:
- Calculus (integration)
- Signal processing
- Fourier analysis
- Physics (wave equations)
- Engineering (power calculations)
Common Values:
- \[ \sin^2(0°) = 0 \]
- \[ \sin^2(30°) = \frac{1}{4} \]
- \[ \sin^2(45°) = \frac{1}{2} \]
- \[ \sin^2(60°) = \frac{3}{4} \]
- \[ \sin^2(90°) = 1 \]
- \[ \cos^2(0°) = 1 \]
- \[ \cos^2(30°) = \frac{3}{4} \]
- \[ \cos^2(45°) = \frac{1}{2} \]
- \[ \cos^2(60°) = \frac{1}{4} \]
- \[ \cos^2(90°) = 0 \]
Derivation:
The power reducing formulas can be derived from the double angle formulas:
- \[ \cos(2x) = 1 - 2\sin^2(x) \]
- \[ \cos(2x) = 2\cos^2(x) - 1 \]
Solving for sin²(x) and cos²(x) gives the power reducing formulas.