Inverse Trigonometric Functions Calculator

Inverse Trigonometric Functions Calculator - Multi-Tools

Inverse Trigonometric Functions Calculator

Calculate inverse trigonometric functions (arcsin, arccos, arctan) and their values.

Input Value
Select Function
Result Unit
Inverse Trigonometric Functions

The inverse trigonometric functions are defined as:

  • \[ \arcsin(x) = \theta \text{ where } \sin(\theta) = x \text{ and } -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \]
  • \[ \arccos(x) = \theta \text{ where } \cos(\theta) = x \text{ and } 0 \leq \theta \leq \pi \]
  • \[ \arctan(x) = \theta \text{ where } \tan(\theta) = x \text{ and } -\frac{\pi}{2} < \theta < \frac{\pi}{2} \]

Properties:

  • Domain of arcsin: [-1, 1]
  • Domain of arccos: [-1, 1]
  • Domain of arctan: (-∞, ∞)
  • Range of arcsin: [-π/2, π/2]
  • Range of arccos: [0, π]
  • Range of arctan: (-π/2, π/2)

Common Values:

  • \(\arcsin(0) = 0\)
  • \(\arcsin(\frac{1}{2}) = \frac{\pi}{6}\)
  • \(\arcsin(\frac{1}{\sqrt{2}}) = \frac{\pi}{4}\)
  • \(\arcsin(\frac{\sqrt{3}}{2}) = \frac{\pi}{3}\)
  • \(\arccos(0) = \frac{\pi}{2}\)
  • \(\arccos(\frac{1}{2}) = \frac{\pi}{3}\)
  • \(\arctan(0) = 0\)
  • \(\arctan(1) = \frac{\pi}{4}\)

Applications:

  • Trigonometry
  • Calculus (integration)
  • Physics (wave motion)
  • Engineering (signal processing)
  • Computer graphics
  • Navigation and surveying

Geometric Interpretation:

  • arcsin(x): Angle whose sine is x
  • arccos(x): Angle whose cosine is x
  • arctan(x): Angle whose tangent is x
  • Used to find angles in right triangles
  • Important in solving trigonometric equations
Scroll to Top