Power Reducing Calculator

Power Reducing Calculator - Multi-Tools

Power Reducing Calculator

Reduce powers of trigonometric functions using power-reducing formulas.

Select Function
Input Value
Power Reducing Formulas

The power reducing formulas are:

  • \[ \sin^2(x) = \frac{1 - \cos(2x)}{2} \]
  • \[ \cos^2(x) = \frac{1 + \cos(2x)}{2} \]
  • \[ \tan^2(x) = \frac{1 - \cos(2x)}{1 + \cos(2x)} \]

Properties:

  • Reduces even powers of trigonometric functions
  • Converts to first power of cosine
  • Useful for integration
  • Helps simplify complex expressions

Applications:

  • Calculus (integration)
  • Signal processing
  • Fourier analysis
  • Physics (wave equations)
  • Engineering (power calculations)

Common Values:

  • \[ \sin^2(0°) = 0 \]
  • \[ \sin^2(30°) = \frac{1}{4} \]
  • \[ \sin^2(45°) = \frac{1}{2} \]
  • \[ \sin^2(60°) = \frac{3}{4} \]
  • \[ \sin^2(90°) = 1 \]
  • \[ \cos^2(0°) = 1 \]
  • \[ \cos^2(30°) = \frac{3}{4} \]
  • \[ \cos^2(45°) = \frac{1}{2} \]
  • \[ \cos^2(60°) = \frac{1}{4} \]
  • \[ \cos^2(90°) = 0 \]

Derivation:

The power reducing formulas can be derived from the double angle formulas:

  • \[ \cos(2x) = 1 - 2\sin^2(x) \]
  • \[ \cos(2x) = 2\cos^2(x) - 1 \]

Solving for sin²(x) and cos²(x) gives the power reducing formulas.

Scroll to Top