Secant Calculator
Calculate the secant of an angle and visualize the function.
Results
Step-by-Step Solution
Function Plot
Secant Function
The secant function is defined as:
\[ \sec(x) = \frac{1}{\cos(x)} \]
Properties:
- Domain: All real numbers except where cos(x) = 0
- Range: (-∞, -1] ∪ [1, ∞)
- Period: 2π (360°)
- Even function: sec(-x) = sec(x)
- Vertical asymptotes at x = π/2 + nπ (90° + n×180°)
Common Values:
- \[ \sec(0°) = 1 \]
- \[ \sec(30°) = \frac{2}{\sqrt{3}} \approx 1.1547 \]
- \[ \sec(45°) = \sqrt{2} \approx 1.4142 \]
- \[ \sec(60°) = 2 \]
- \[ \sec(90°) = \text{undefined} \]
Applications:
- Trigonometry
- Calculus
- Physics (wave motion)
- Engineering (signal processing)
- Navigation
Related Functions:
- \[ \sec(x) = \frac{1}{\cos(x)} \]
- \[ \sec(x) = \frac{\sqrt{1 + \tan^2(x)}}{\tan(x)} \]
- \[ \sec(x) = \frac{\csc(x)}{\cot(x)} \]