Secant Calculator - Multi-Tools

Secant Calculator

Calculate the secant of an angle and visualize the function.

Input Value
Function Plot
Secant Function

The secant function is defined as:

\[ \sec(x) = \frac{1}{\cos(x)} \]

Properties:

  • Domain: All real numbers except where cos(x) = 0
  • Range: (-∞, -1] ∪ [1, ∞)
  • Period: 2π (360°)
  • Even function: sec(-x) = sec(x)
  • Vertical asymptotes at x = π/2 + nπ (90° + n×180°)

Common Values:

  • \[ \sec(0°) = 1 \]
  • \[ \sec(30°) = \frac{2}{\sqrt{3}} \approx 1.1547 \]
  • \[ \sec(45°) = \sqrt{2} \approx 1.4142 \]
  • \[ \sec(60°) = 2 \]
  • \[ \sec(90°) = \text{undefined} \]

Applications:

  • Trigonometry
  • Calculus
  • Physics (wave motion)
  • Engineering (signal processing)
  • Navigation

Related Functions:

  • \[ \sec(x) = \frac{1}{\cos(x)} \]
  • \[ \sec(x) = \frac{\sqrt{1 + \tan^2(x)}}{\tan(x)} \]
  • \[ \sec(x) = \frac{\csc(x)}{\cot(x)} \]
Scroll to Top